mardi 10 février 2015

Pour mieux comprendre les concepts qui sous tendent le film Interstellar :

Qu'est-ce qu'un trou noir ?

En astrophysique, un trou noir est un objet céleste si compact que l'intensité de son champ gravitationnel empêche toute forme de matière ou de rayonnement de s’en échapper. De tels objets ne peuvent ni émettre, ni réfléchir la lumière et sont donc noirs, ce qui en astronomie revient à dire qu'ils sont invisibles. Toutefois, plusieurs techniques d’observation indirecte dans différentes longueurs d'ondes ont été mises au point et permettent d’étudier les phénomènes qu’ils induisent. En particulier, la matière happée par un trou noir est chauffée à des températures considérables avant d’être « engloutie » et émet une quantité importante de rayons X. Envisagée dès le XVIIIe siècle, dans le cadre de la mécanique classique, leur existence — prédite par la relativité générale — est une certitude pour la quasi-totalité de la communauté scientifique concernée (astrophysiciens et physiciens théoriciens).

Dans le cadre de la relativité générale, un trou noir est défini comme une singularité gravitationnelle occultée par un horizon absolu appelé horizon des événements. Selon la physique quantique, un trou noir est susceptible de s'évaporer par l'émission d'un rayonnement de corps noir appelé rayonnement de Hawking.
Un trou noir ne doit pas être confondu avec un trou blanc ni avec un trou de ver.

 

Qu'est-ce qu'un trou de ver ?

Un trou de ver (en anglais : wormhole) est, en physique, un objet hypothétique qui relierait deux feuillets distincts ou deux régions distinctes de l'espace-temps et se manifesterait, d'un côté, comme un trou noir et, de l'autre côté, comme un trou blanc.

Le physicien autrichien Ludwig Flamm (1885-1964) est parfois présenté comme étant le premier à avoir suggéré, dès 1916, l'existence des trous de ver. Mais la communauté scientifique s'accorde pour considérer que leur existence n'a été suggérée qu'en 1935, par Albert Einstein et Nathan Rosen.

Les trous de ver doivent leur nom à Charles W. Misner et John A. Wheeler qui les désignèrent ainsi en 1957.

En 2013, Juan Maldacena et Leonard Susskind ont proposé une conjecture qui établit un lien entre l'intrication quantique et le trou de ver : la conjecture ER=EPR. Elle a été complétée par Kristan Jensen et Andreas Karch ainsi que par Julian Sonner.

Un trou de ver formerait un raccourci à travers l'espace-temps. Pour le représenter plus simplement, on peut se représenter l'espace-temps non en quatre dimensions mais en deux dimensions, à la manière d'un tapis ou d'une feuille de papier. La surface de cette feuille serait pliée sur elle-même dans un espace à trois dimensions.

L'utilisation du raccourci "trou de ver" permettrait un voyage du point A directement au point B en un temps considérablement réduit par rapport au temps qu'il faudrait pour parcourir la distance séparant ces deux points de manière linéaire, à la surface de la feuille. Visuellement, il faut s'imaginer voyager non pas à la surface de la feuille de papier, mais à travers le trou de ver ; la feuille étant repliée sur elle-même permet au point A de toucher directement le point B. La rencontre des deux points serait le trou de ver.

L'utilisation d'un trou de ver permettrait le voyage d'un point de l'espace à un autre (déplacement dans l'espace), le voyage d'un point à l'autre du temps (déplacement dans le temps) et le voyage d'un point de l'espace-temps à un autre (déplacement à travers l'espace et en même temps à travers le temps).

Les trous de ver sont des concepts purement théoriques : l'existence et la formation physique de tels objets dans l'Univers n'ont pas été vérifiées.

Il ne faut pas confondre trous de ver et trous noirs : les trous de ver sont hypothétiques, alors que les trous noirs sont des objets qui existent réellement et dont le champ gravitationnel est si intense qu’il empêche toute forme de matière de s'en échapper.


Théorie de la relativité

L'expression théorie de la relativité renvoie le plus souvent à deux théories distinctes élaborées par Albert Einstein : la relativité restreinte et la relativité générale. Ce terme peut aussi renvoyer à une idée plus ancienne, la relativité galiléenne qui s'applique à la mécanique newtonienne.
En 1906, le physicien allemand Max Planck utilise l'expression « théorie relative » (Relativtheorie), qui met l'accent sur l'usage du principe de relativité. Dans la partie discussion de cet article, le physicien allemand Alfred Bucherer utilise pour la première fois le terme « théorie de la relativité » (Relativitätstheorie).
Les concepts mis en avant par la théorie de la relativité restreinte comprennent :
  • L'espace-temps : l'espace et le temps doivent être perçus comme formant une seule entité.
  • La vitesse de la lumière dans le vide est invariable, peu importe la vitesse de l'observateur et de la source lumineuse. Les calculs montrent qu'alors elle est aussi la vitesse maximale de déplacement, qu'elle n'est atteinte que pour la lumière ou toute notion dépourvue de masse, et doit être considérée comme la vitesse maximale de déplacement de l'information.
  • Les mesures de diverses quantités sont relatives à la vitesse de l'observateur. En particulier, le temps se dilate et l'espace se contracte.
Les concepts mis en avant par la théorie de la relativité générale comprennent :
  • L'espace-temps se courbe d'autant plus que la masse à proximité est grande.
  • La gravité influence l'écoulement du temps.
La relativité générale est une théorie relativiste de la gravitation, c'est-à-dire qu'elle décrit l'influence sur le mouvement des astres de la présence de matière et, plus généralement d'énergie, en tenant compte des principes de la relativité restreinte. La relativité générale englobe et supplante la théorie de la gravitation universelle d'Isaac Newton qui en représente la limite aux petites vitesses (comparées à la vitesse de la lumière) et aux champs gravitationnels faibles.

La relativité générale est principalement l'œuvre d'Albert Einstein, dont elle est considérée comme la réalisation majeure, qu'il a élaborée entre 1907 et 1915. Les noms de Marcel Grossmann et de David Hilbert lui sont également associés, le premier ayant aidé Einstein à se familiariser avec les outils mathématiques nécessaires à la compréhension de la théorie (la géométrie différentielle), le second ayant franchi conjointement avec Einstein les dernières étapes menant à la finalisation de la théorie après que ce dernier lui en eut présenté les idées générales dans le courant de l'année 1915.

La relativité générale est fondée sur des concepts radicalement différents de ceux de la gravitation newtonienne. Elle énonce notamment que la gravitation n'est pas une force, mais la manifestation de la courbure de l'espace (en fait de l'espace-temps), courbure elle-même produite par la distribution de l'énergie, sous forme de masse ou d'énergie cinétique, qui diffère suivant le référentiel de l'observateur. Cette théorie relativiste de la gravitation prédit des effets absents de la théorie newtonienne mais vérifiés, comme l'expansion de l'Univers, ou vérifiables, comme les ondes gravitationnelles et les trous noirs. Elle ne permet pas de déterminer certaines constantes ou certains aspects de l'univers (notamment son évolution, s'il est fini ou non, etc.) : des observations sont nécessaires pour préciser des paramètres ou faire des choix entre plusieurs possibilités laissées par la théorie.

Aucun des nombreux tests expérimentaux effectués à ce jour (2011) n'a pu la mettre en défaut. Toutefois, des questions restent sans réponse : principalement sur le plan théorique, comment la relativité générale et la physique quantique peuvent être unies pour produire une théorie complète et cohérente de gravité quantique; et sur le plan des observations astronomiques ou cosmologiques, comment concilier certaines mesures avec les prévisions de la théorie (matière noire, énergie sombre).

Source : Wikipédia